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a b s t r a c t

This research reports the first application of β-cyclodextrin (β-CD) complexes as a new method for
generation of three way data, combined with second-order calibration methods for quantification of a
binary mixture of caffeic (CA) and vanillic (VA) acids, as model compounds in fruit juices samples. At
first, the basic experimental parameters affecting the formation of inclusion complexes between target
analytes and β-CD were investigated and optimized. Then under the optimum conditions, parallel factor
analysis (PARAFAC) and bilinear least squares/residual bilinearization (BLLS/RBL) were applied for
deconvolution of trilinear data to get spectral and concentration profiles of CA and VA as a function of
β-CD concentrations. Due to severe concentration profile overlapping between CA and VA in β-CD
concentration dimension, PARAFAC could not be successfully applied to the studied samples. So, BLLS/
RBL performed better than PARAFAC. The resolution of the model compounds was possible due to
differences in the spectral absorbance changes of the β-CD complexes signals of the investigated
analytes, opening a new approach for second-order data generation. The proposed method was validated
by comparison with a reference method based on high-performance liquid chromatography photodiode
array detection (HPLC-PDA), and no significant differences were found between the reference values and
the ones obtained with the proposed method. Such a chemometrics-based protocol may be a very
promising tool for more analytical applications in real samples monitoring, due to its advantages of
simplicity, rapidity, accuracy, sufficient spectral resolution and concentration prediction even in the
presence of unknown interferents.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Analytical chemistry can involve samples that are far from
being simple, containing numerous components to be analyzed
simultaneously, or a few target analytes in the presence of many
chemical interferents. In these cases, sophisticated instrumenta-
tion and mathematical tools are available to deal with the com-
plexity [1]. Nowadays, multivariate calibration can be considered
as one of the most active research areas in analytical chemistry
field to solve the above mentioned problems. Depending on the
data complexity, different multivariate calibration methods, such
as zero, first, second, third order calibrations and so on [2], are
available.

Second-order calibrations are particularly attractive for deter-
minations of complex samples, essentially due to their ability to
perform determinations even in the presence of interferences
unmodeled in the calibration step, a property known as the
second-order advantage. Second-order data for a given sample
can be easily produced in a variety of ways, either in a single
instrument or by resorting to instrument hyphenation. In second-
order multivariate calibration, a data matrix is produced per
sample and grouping matrices for all calibration samples give
three-dimensional data known as three-way array [3,4].

In the present study, the authors demonstrated for the first
time an accurate, reliable, inexpensive and simple way for produ-
cing second-order data based on formation of inclusion complexes
between target analytes and β-CD. Dielectric properties of the
environment are known to affect spectral and molecular proper-
ties of molecules, such as absorption intensity and position of
peaks in the spectra. Hence, properties of a molecule embedded in
a cyclodextrin cavity can be expected to differ from those observed
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in bulk water. In this system, the absorbance changes upon
variations in the concentration of β-CD, therefore, it gives the
absorbance spectra–concentration of β-CD matrix data, and bind-
ing these data matrices for a set of samples will produce a three-
way array.

Cyclodextrins (cyclic oligosaccharides composed of seven D-
glucose units) are known for their ability to bind covalently or
noncovalently and to form inclusion complexes with organic
compounds [5]. Complex formation is a dimensional fit between
a host cavity and a guest molecule [6]. The lipophilic cavity of
cyclodextrin molecules provides a microenvironment, into which
appropriately sized non-polar moieties can enter to form inclusion
complexes [7]. The main driving force of the complex formation is
a release of enthalpy-rich water molecules from the cavity [8–10].
Replacement of water molecules by more hydrophobic guest
molecules present in the solution results in a formation of an
inclusion complex between the host and the guest. CDs have
found extensive applications in many fields, including food indus-
try [11], environmental protection analysis [12] and enzyme
modeling [13].

Phenolic acids are secondary metabolites that are commonly
found in plant-derived food. Structurally, phenolic acids derive
from either hydroxycinnamic or hydroxybenzoic acid skeletons.
Caffeic and vanillic acids are among the most abundant hydro-
xybenzoic derivatives in plants [14]. Unlike hydroxycinnamates,
hydroxybenzoic acid derivatives are mainly present in food [15].
Among the variety of phenolic compounds, phenolic acids have
attracted considerable interest in the past few years, due to their
many potential health benefits. Phenolic acids are bioactive
compounds, present in the diary diet and influencing health. They
are antioxidative, antitumor, antimutagenic and antibacterial [16–
18]. Moreover, phenolic acids can inhibit DNA damage [19]. As a
result, consumption of fruits is a major source of phenolic acids in
the diet. Interestingly, fruit extracts richer in phenolic acids usually
present a larger antioxidative activity than the corresponding pure
compounds or even vitamins, which is an evident synergistic
effect [20]. Therefore, determination of phenolic acids in food
samples, such as fruit juice samples, is an important analytical
task.

Many different analytical techniques have been used for the
determination of phenolic acids, including gas chromatography–mass
spectrometry (GC–MS) [21–23], capillary electrophoresis (CE) meth-
ods [24–26], micellar electrokinetic chromatography (MEKC) [27,28].
In addition, the most widely used methods are based on reversed-
phase high-performance liquid chromatography (RP-HPLC) coupled
with UV–vis detection and/or mass spectrometry [29–31]. The
reported methods not only require sophisticated analytical instru-
mentation, they are also time-consuming and difficult to apply to
analysis of a complex matrix sample without any pretreatment.
Moreover, such facilities are not commonly available at all labora-
tories. However, several chemometric procedures have been used
as the basis for discrimination and classification of phenolic acids
[32–35]. But these studies are based on first-order multivariate
calibration and report only qualitative results. Second order calibra-
tion methods play an important role in solving the problem of closely
overlapping spectra, like in this study. These methods utilize a
mathematical separation procedure to carry out the determination
using standards that contain only the analyte of interest, and so the
interferents do not need to be present in the calibration standards. In
addition, these approaches not only determine the concentrations,
but can also provide spectral profiles of the target components in the
mixtures, even in the presence of uncalibrated components, exploit-
ing the so-called second-order advantage [3,36–39].

The aim of the present work is to propose a new and reliable
spectrophotometric method based on β-CD complexes, as a new
method for generation of three way data, for simultaneous

quantification of multicomponents with overlapping spectra, in
the presence of uncalibrated interferents. Deconvolution of con-
centration of β-CD-resolved absorbance spectra was carried out
using BLLS/RBL and PARAFAC, while these models used the
second-order advantage. The results indicated a better predictive
ability of the BLLS/RBL procedure in comparison with standard
PARAFAC. Finally, predictive ability, figures of merit and accuracy
were estimated for BLLS/RBL to demonstrate its potential as an
alternative for quantification of CA and VA as an example in fruit
juices samples, even in the presence of unexpected or unmodeled
interferents and without sample pretreatments. To the best of our
knowledge, this is the first attempt to apply BLLS/RBL and
PARAFAC with β-CD complexes for this purpose.

2. Theory of BLLS/RBL and PARAFAC

2.1. Bilinear least squares/residual bilinearization (BLLS/RBL)

The BLLS/RBL [40–43] model has been discussed in detail in the
literature; thus only a brief description of this model is presented
here. Bilinear least-squares followed by residual bilinearization
step has been developed and applied for two-way data modeling
[38]. The BLLS method uses analyte concentration introduced into
the calibration step, where only standard matrices are present; in
order to obtain approximations of pure-analyte matrices at unit
concentration (Sn). The first step is the vectorization of each data
matrix of the calibration set X (each of size J�K) and the Ic
calibration samples are grouped in a matrix Vx of dimension
(JK� Ic):

Vx ¼ ½vecðX1ÞjvecðX2Þj⋯jvecðXIcÞ� ð1Þ

where “vec” is the operation of unfolding the matrix into the
vector.

The next step employs direct least squares [40,41] to obtain
information of the pure analyte matrices at unit concentration
(Vs), in a procedure analogous to first-order classical least squares:

VS ¼VxYþ ð2Þ

where Y is an I�NC matrix of the reference concentrations, NC is
the number of calibrated analytes. Vs (JK�NC) contains the
required Sn matrices in the vectorized form:

VS ¼ ½vecðS1ÞjvecðS2Þj⋯jvecðSNcÞj� ð3Þ

To obtain the spectral profiles from the estimated matrix,
singular value decomposition (SVD) is employed at each estimated
matrix (Sn), obtained after an appropriate reshaping of the
unfolded vec (Sn) [40,41]:

ðbn; gn; cnÞ ¼ SVDðSnÞ ð4Þ

where gn is the first singular value, and bn and cn are J�1 and
K�1, the first left and right singular vectors of Sn, respectively.

The concentration of an unknown sample (which matrix data
are Xu) can be estimated, provided that no interference occurs, by
a direct least squares procedure [40,41]:

yu ¼ Sþ
calvecðXuÞ ð5Þ

where yu is an NC�1 vector of the estimated concentration of the
NC analytes in the sample and Scal is a calibration JK�NC matrix
given by:

Scal ¼ ½g1ðc1 � b1Þjg2ðc2 � b2Þ ⋯j jgNcðcNc � bNcÞj ð6Þ

where � indicates the Kronecker product.
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2.2. Parallel factor analysis (PARAFAC)

A brief summary on spectral deconvolution and calibration using
PARAFAC is given here. PARAFAC performs the decomposition of a
three-way data array X (I� J�K), consisting of I training matrices of
dimensions J�K, in three loading matrices: A (I�N), B (J�N) and C
(K�N), where N is the number of factors or responsive components.
This decomposition can be represented by Eq. (7), for a generic
element xijk of the three-dimensional array X:

xijk ¼ ∑
N

n ¼ 1
anibnjcnk þ eijk ð7Þ

where eijk is an element of the residual error array E of the same
dimensions as X; ani, bnj and cnk are the elements of the column
vectors an, bn and cn. The column vectors are collected into the three
loading matrices A, B and C. The trilinear model is found by
minimizing the sum of squares of the residuals given by Eq. (7) by
alternating least squares (ALS). The profile of the each compound in
the mixture is stored in one factor of the PARAFAC model. Therefore,
the model presents low flexibility utilizing low degrees of freedom
and determining a unique solution for the system. The regression
model is obtained by least squares regression between the column of
A related to the analyte and the reference concentration (y) of the
calibration samples [44]:

y¼ωa ð8Þ
where ω is the liner regression coefficient. This method is not ideal
for handling data, which are not strictly trilinear in the latter sense
[45]. The number of components to be modeled can be estimated by
different methods, such as evaluation of the core consistency or
percentage of the fit [46,47]. In the present case, the optimum
number of PARAFAC factors is estimated by core consistency for each
factor. A core consistency close to 100% implies an appropriate
(trilinear) model. A core consistency close to zero or even negative
implies an invalid model [46].

2.3. Figures of merit

The determination of figures of merit (FOM), such as accuracy,
sensitivity and selectivity, is an important necessity for the
validation of these kinds of chemometric methods. In chemo-
metrics, the root mean squares error of prediction (RMSEP)
generally expresses the accuracy of the model. It reports the
closeness of agreement between the reference value and the value
found by the model:

RMSEP¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑I

n ¼ 1ðyn� ŷnÞ2
I�1

s
ð9Þ

where y is the reference concentration value for each of the I test
samples, andŷ is the concentration value estimated by the second-
order model. When expressing FOM for multivariate calibration
methods, the part of the signal that relates uniquely to the analyte
of interest is more important than the total signal. This unique
signal is termed net analyte signal (NAS). For second-order data,
the estimation of NAS is analogous to those for first-order
procedures. In the present work, the NAS is the pure analyte data
obtained by PARAFAC and BLLS/RBL and can be calculated accord-
ing to Eq. (10) [39].

NASij ¼ aijðbj � cTj Þ ð10Þ

where NASij is the net analyte signal for the ith sample and jth
analyte, ai,j is the obtained score, bj and cj are the loading vectors for
other dimensions and � means the kronecker product. When using
second-order advantage, each ith sample will have a specific value of
NAS, and sensitivity (SENi) is estimated as the NAS at unit

concentration, as shown in Eq. (11). Selectivity (SELi) is estimated as
the ratio between SENi and the total signal, according to Eq. (12) [39].

SENi ¼ jjNASijjF ð11Þ

SELi ¼
jjNASijjF
jjNijjF

ð12Þ

Ni is the matrix of the total signal and the symbol || ||F means the
Frobenius norm of a matrix. A more informative FOM is the
analytical sensitivity (γ), which is defined, as the ratio between
SENi and the variance of instrumental signal, which may be
estimated by replicate blank measurements [39]:

γi ¼
SENi

sð0Þ ð13Þ

The inverse of this parameter (γ�1) reports the minimum
concentration difference between two samples that can be deter-
mined by the model. Finally, according to Eq. (14) the limit of
detection (LOD) can be estimated as 3.3 times the standard
deviation for a sample of low or zero analyte concentration.

LOD¼ 3:3 sð0Þ ð14Þ
As the second-order advantage was applied, SEN and SEL

determinations are sample specific and cannot be defined for the
multi-way method as a whole. In such cases, average values for a
set of samples can be estimated and reported.

3. Experimental

3.1. Reagents and solutions

All chemicals used in this work were of analytical grade. All
chemicals were purchased from Merck (Darmstadt, Germany) or
Aldrich (Chemical Co., Milwaukee, WI, USA). Beta-cyclodextrin
(β-CD) (498%) and phenolic acids, caffeic acid (CA) and vanillic
acid (VA), were purchased from Merck. Double distilled water was
used throughout the experiments. Stock solutions of 200 mg L�1 CA
and VA were prepared in double distilled water. Working standard
solutions and mixtures of target phenolic acids were freshly
prepared by appropriate dilution of stock solutions with double
distilled water to the required concentrations. Both stock and
working solutions were stored in a refrigerator at 4 1C in darkness.
The HCl (37%) and H3PO4 acids were used to adjust the pH to 3.0.

3.2. Instrumentation and software

A UV–vis spectrophotometer (Perkin Elmer, Lambda 25, www.
perkinelmer.com) with 10 mm quartz cells was used to measure
the absorbance of the phenolic acids. A Universal 320R refrigerated
centrifuge equipped with an angle rotor (6-place, 9000 rpm, Cat.
No. 1620A) was from Hettich (Kirchlengern, Germany). pH of
aqueous solution was measured by a digital pH meter (Metrohm,
model 692, Herisau, Switzerland) equipped with a glass combina-
tion electrode.

Chromatographic analyses were performed with a HPLC instru-
ment including a Knauer S 1000 HPLC pump (Germany), with a
20 μL sample loop, equipped with a Knauer S 2800 PDA detector.
Chromatographic data were recorded and analyzed using
EZChrom Elite software.

The UV–vis spectra were recorded between 200 and 700 nm, in
steps of 1 nm. All spectra were exported in ASCII format, and the
data treatment was carried out using MATLAB version 7.9.0 on a
personal computer. Second order multivariate calibration using
BLLS/RBL and PARAFAC was carried out using multivariate calibra-
tion for second-order (MVC2) program, which is available on the
internet and performs under Matlab environment [48].
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3.3. Formation of inclusion complexes of β-CD with vanillic and
caffeic acids procedure

For formation of inclusion complexes of β-CD under optimum
conditions, an appropriate volume of CA and VA working solutions
or of the sample solution was placed in a 10.0 mL volumetric flask.
Then, desired amount of 0.02 mol L�1 β-CD solution (in the range
of 0.0001–0.0013 mol L�1) was added and the pH of solution was
adjusted to pH¼3.0. The mixed solution was diluted to the final
volume with distilled water and sonicated for 30 min at room
temperature (25 1C). The absorbance data of samples were taken
in the range of 200 and 700 nm against the reagent blank by
spectrophotometer with a good reproducibility. Then the data
were transferred to a personal computer and processed by apply-
ing chemometric analysis based on the second order algorithms,
using BLLS/RBL and PARAFAC, which was carried out using MVC2
program.

3.4. Calibration and validation sample sets

The first step in the simultaneous determination of different
analytes by second-order multivariate calibration methodologies
involved construction of the calibration matrix for a mixture of
analytes. Eleven standard solutions with a random design for
concentrations of both analytes were prepared and used for the
calibration set. The concentrations were between 0–6.0 and 0–
9.0 μg mL�1 for CA and VA, respectively. The analyte concentra-
tions are shown in Table 1.

A seven sample set (validation set) was built to validate the
employed multivariate model. The analyte concentrations arose
from a random design (see Table 2). Calibration and validation
samples were prepared by measuring appropriate aliquots of
standard solutions of each phenolic acid, placing them into
10.0 mL volumetric flasks to obtain the desired concentrations,
and completing to the mark with double distilled water.

Each calibration, validation and real samples mixtures were
measured according to the procedure described in Section 3.3. The
absorption spectra were recorded between 200 and 700 nm with
the scan rate of 450 nm min�1 against the blank. The spectral
region between 255 and 315 nm was selected for the analysis,
because this is the zone with the maximum spectral information
about the component mixture of interest.

3.5. Pretreatment and arrangement of spectral data for multi-way
modeling

No pre-processing of the data was performed. In present study,
the three-way data (concentration of β-CD-resolved absorbance
data) for calibration, validation and real samples (fruit juices
samples) as data sets (samples� absorbance� concentration of
β-CD) were arranged as: calibration data: 11�61�7 (I� J�K),
validation set: 7�61�7 (I� J�K), real samples: 8�61�7
(I� J�K). Second order multivariate calibration using BLLS/RBL
and PARAFAC were carried out using MVC2 program. In fact, the
current study exhibited the absorbance of CA and VA changes
upon variations in the concentration of β-CD.

3.6. Preparation of fruit juices samples

Four commercial fruit juices containing 100% natural juices
(barberry and pomegranate juices), 45% juice (sour cherry juice)
and 50% juice (orange juice) were obtained from a local
supermarket in Tehran. The samples were stored at 4 1C before
use. 20 mL of each fruit juice samples were centrifuged
at 5000 rpm for 10 min. The supernatant was filtered through a
0.45 μm pore size membrane filter and diluted to 200 mL with
double distilled water.

Generally, all of these real samples were clear and no sedi-
ments or suspensions were observed. Finally, an accurate volume
of 10 mL of each of the prepared real samples were analyzed under
the recommended procedure (see Section 3.3) and the exact CA

Table 1
Composition of the phenolic acids mixtures used for calibration set.

Calibration samples VA (μg mL�1) CA (μg mL�1)

C1 7.0 0
C2 9.0 0
C3 0 4.0
C4 0 6.0
C5 6.0 2.0
C6 8.0 1.0
C7 2.0 3.0
C8 3.0 3.0
C9 1.0 5.0
C10 5.0 2.0
C11 4.0 0

Table 2
Validation set samples and prediction results of CA and VA (μg mL�1) using BLLS/RBL and PARAFAC methods.

Validation samples Predicted concentration (n¼3)

BLLS/RBLa PARAFACb

Mixture VA CA VA CA VA CA

V1 4.5 3.5 4.4 (97.77)c 3.6 (102.85) 4.38 (97.33) 4.00 (114.28)
V2 0 4.0 0.01 (�) 4.12 (103.00) 0 (�) 4.3 (107.5)
V3 5.0 1.5 4.95 (99.00) 1.63 (108.66) 4.90 (98.00) 1.8 (120.00)
V4 7.5 2.5 7.42 (98.93) 2.39 (95.6) 7.30 (97.33) 2.88 (115.2)
V5 1.0 5.0 0.94 (94.00) 5.16 (103.2) 0.90 (90.00) 5.40 (108.00)
V6 6.5 0 6.53 (100.46) 0 (�) 6.40 (98.46) 0.47 (�)
V7 3.0 3.0 2.90 (96.66) 3.14 (104.66) 2.91 (97.00) 3.4 (113.33)
Mean recovery 97.80 102.99 96.35 113.05
RMSDd 0.112 0.117 0.116 0.28
REP%e 3.08 4.53 3.18 10.79

a BLLS/RBL was carried out maintaining number of solutes and number of interferences at 2 and 0, respectively.
b PARAFAC modeling was carried out using two factors as selected by core consistency criterion.
c Recovery in parenthesis.
d Root-mean-square difference.
e Relative error of prediction, REP¼ 100

c
1
I∑

I
1ðCact �CpredÞ2

h i1=2
, where I is the number of samples, cact and cpred are the actual and predicted concentrations, and c is the

mean concentration.
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and VA concentrations in the original samples were then deter-
mined with the aid of second-order calibration method.

3.7. Chromatographic separation and quantification of compounds of
interest in real samples

The concentrations of CA and VA in fruit juices samples were
verified by the HPLC-PDA method. The separations were
carried out on a C18 column (250 cm�4.0 mm, with the particle
size of 5 μm). A mixture of acetonitrile and phosphoric acid
(25 mmol L�1) (15:85 v/v) for 10 min at a flow rate of
1.0 mL min�1 were used as a mobile phase at room temperature.
The linear calibration range was from 1 to 15 μg mL�1 for both
analytes. The detections were performed at 214 nm for VA and at
252 nm for CA. Retention times were used for identification of
compounds of interest and peak areas obtained at different
concentrations were used to plot calibration lines for each analyte.
Prior to injection into a column, all solutions were filtered using
0.45 μm filters to remove insoluble materials.

4. Results and discussion

In order to achieve maximum formation of inclusion complexes
of β-CD with target phenolic acids, at first various experimental
parameters were investigated and optimized. Then under the
optimum conditions, BLLS/RBL and PARAFAC algorithms were
applied for the simultaneous spectrophotometric quantification
of CA and VA.

4.1. Optimum conditions for formation of inclusion complexes
of CA and VA-β-CD

4.1.1. Effect of pH on formation of inclusion complexes
of CA and VA with β-CD

Caffeic and vanillic molecules contain a benzene ring group,
which size and geometry are suitable for the hydrophobic cavity of
β-CD; therefore, they are easily included by β-CD from aqueous
solution to form a supramolecular complex. The species of CA and
VA molecules in aqueous solutions are changeable with pH of the
solution, due to ionization. In acidic conditions, CA and VA are very
stable and exist with neutral molecules. On the contrary, stability
of the target phenolic acids decreases in basic medium, because
hydroxyl group takes place of ionization to form the related
phenyl salt.

As β-CD cavity is hydrophobic and the major inclusion inter-
actions are hydrophobic interactions between the guest and β-CD
cavity, the neutral molecules of CA and VA in acidic medium are
more easily included by β-CD than the related salt of CA and VA in
basic medium. The results of β-CD including CA and VA in different
pH values are shown in Fig. 1. The results showed that maximum
absorbance intensities appeared at pH 3.0 and decreased with the
increasing pH value. Based on Fig. 1, pH 3.0 was selected for
further experiments.

4.1.2. Effects of temperature and time on β-CD including CA and VA
Effect of temperature on β-CD including CA and VA is shown in

Fig. 2. It can be seen that in the inclusion process of CA and VA, the
absorbance intensities gradually decrease, as the temperature
increases. The maximum absorbance intensities were observed
at room temperature (2571 1C). In addition, with higher tem-
perature it was easier to reach the inclusion equilibrium and also
the inclusive time was shorter, which is in accordance with general
absorption reaction rules.

For inclusion of CA and VA on β-CD, sonication was applied in
the present work. The sonication time required for attaining the

inclusion equilibrium depended on the system. The results
showed that for the time of 10 min, the inclusion equilibrium
was reached at 60 1C, for 15 min at 50 1C, for 25 min at 30–40 1C,
and for 30 min at 25 1C, respectively. Based on these results, the
room temperature (25 1C) and the time of 30 min were chosen for
further experiments.

4.1.3. Effect of ionic strength on β-CD including CA and VA
Effect of ionic strength on the formation of β-CD including CA

and VA complexes was investigated. The concentration of sodium
nitrate (NaNO3) varied from 0.0 to 0.5 mol L�1. The results showed
a little increase in absorbance when the concentration of NaNO3

was changed from 0.01 to 0.1 mol L�1. Furthermore, it was
approximately constant when the concentration of NaNO3 was
between 0.2 and 0.5 mol L�1. In conclusion, the ionic strength has
little effect on the inclusion of target phenolic acids in β-CD.
Therefore, the ionic strength was controlled at 0.1 mol L�1 in
further research.

4.2. Absorption spectra—Concentration of β-CD matrix data

With three-way data, a matrix of data is collected from each
analyzed sample. Such data are generally collected from excita-
tion–emission matrix (EEM) fluorescence spectroscopy and

Fig. 1. Effect of pH on β-CD including CA and VA. Conditions: concentration of β-
CD: 0.7 mmol L�1, Concentration of each phenolic acid: 5 μg mL�1, sonication
time: 30 min, room temperature, total volume: 10 mL.

Fig. 2. Effect of temperature on β-CD including CA and VA. Conditions: concentra-
tion of β-CD: 0.7 mmol L�1, Concentration of each phenolic acid: 5 μg mL�1,
pH¼3.0, sonication time: 30 min, total volume: 10 mL.
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‘hyphenated’ analytical methods, such as HPLC with diode-array
detection (HPLC-DAD), GC–MS, and capillary electrophoresis with
DAD (CE-DAD) [3]. The absorption spectra-pH matrix data can also
present three-way data [49]. The main purpose of this study is to
introduce a new method for generation of three-way data by
changing the β-CD concentration for each set of binary mixtures of
both analytes. β-CD is one of the most important host molecules in
supramolecular chemistry. β-CD has the peculiar ‘interior hydro-
phobic, exterior hydrophilic’ structure forming a 1:1 or 1:2
inclusion complex with guest molecules, thus the physical, che-
mical and biochemical characters of guest molecules are modified
[50,51]. Properties of β-CD affect spectroscopic properties, absorp-
tion and fluorescence spectra and especially molar absorptivities
of CA and VA. The addition of β-CD to the solution mixture of CA
and VA and the subsequent increase of the absorbance in the
wavelength range help to have a series of spectra, which can make
a bilinear data matrix. By changing the initial concentration of
binary mixtures of target phenolic acids and addition of β-CD, a
three dimensional data matrix can be generated. To avoid non-
linearity due to high concentrations of analytes, the range of the
applied concentration of two analytes were kept low enough to
limit the absorbances to be lower than 1.0.

4.3. Spectral behavior of the compounds of interest

Fig. 3a shows the normalized absorbance spectra of the pure
mixture of CA and VA, recorded under the optimum conditions. As
it can be seen, the spectra for the two analytes are considerably
overlapped. Considering this spectral overlapping, it can be con-
cluded that the simultaneous determination of binary mixtures of
CA and VA in their synthetic mixtures and in fruit juices samples
cannot be carried out by applying conventional methods. In order
to overcome this problem, a mathematical separation procedure
based on chemometrics methods can be applied. For this purpose,
second-order data, such as concentration of β-CD-resolved absor-
bance data matrices, were obtained and processed with second-
order algorithms based on BLLS/RBL and PARAFAC, achieving the
second-order advantage.

4.4. Prediction of CA and VA in validation samples

The performance of second-order calibration methods based on
BLLS/RBL and PARAFAC were initially tested for determination of
CA and VA in validation samples. For BLLS/RBL model, the number
of calibrated solutes and the number of expected interferents were
set as 2 and 0, respectively. Number of interferents was set as 0,
because validation samples were free from any interferents. For
PARAFAC analysis, core consistency criterion, outlined earlier, was
adopted to find the optimum number of factors leading to
optimum data deconvolution. For the first three factors, the
corresponding core consistency values were 100, 98 and �33,
and as mentioned in Section 2.2, the optimum number of factors
was 2. Under the calibration conditions designed earlier, predic-
tion of CA and VA in validation samples by BLLS/RBL and PARAFAC
are presented in Table 2. Root-mean-square difference (RMSD)
[52] and relative error of prediction (REP) criteria were applied as
indicators for the quality of model's prediction, the final results are
shown in Table 2. Due to an intense overlap concentration profile
between CA and VA in β-CD concentration dimension (Fig. 3b),
BLLS provides better results than PARAFAC. The idea behind the
BLLS algorithm can explain these results, since BLLS employs
concentration information in the calibration step, a direct least
squares procedure to obtain the pure-analyte information and no
initialization and constraining procedures, yielding analyte pro-
files and concentrations in samples where strong overlapping
occurs. Finally, BLLS/RBL algorithm was chosen for processing of

data to resolve each of the analyte profiles from any uncalibrated
interferences in subsequent studies.

Validation samples show 3-D plots similar to those of calibra-
tion samples, therefore satisfactory results in the prediction step
by applying BLLS/RBL were reasonably expected (Fig. 4a and b).
The prediction results for the validation set were reasonably good,
leading to a mean recovery of 97.80% and 102.99%, a REP of 3.08%
and 4.53%, and a RMSD of 0.112 and 0.117 for VA and CA,
respectively (see Table 2). These parameters indicate that the
proposed method is a feasible methodology for achieving the
second-order advantage in cases of sample components with
similar spectra. Regarding the pseudounivariate calibration graphs
using BLLS/RBL models, they are displayed in Fig. 4c and d. As it
can be seen, a very good fitting was obtained for both components.
This fact reflects a high calibration power of the model.

Figures of merit for the proposed BLLS/RBL method were
estimated using MVC2 program where net-analyte signal concept
(see Section 2.3) was applied [39]. Figures of merit including
sensitivity (SEN), analytical sensitivity (γ), selectivity (SEL), limit of
detection (LOD) and RMSEP are summarized in Table 3. From
Table 3, it can be seen that the BLLS/RBL model offers a very
sensitive and selective method for simultaneous determination of
CA and VA.

Fig. 3. (a) Individual normalized spectra of target analytes under the optimum
conditions. (b) Normalized β-CD concentration profile.
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4.5. Simultaneous quantification of CA and VA in real samples

Determination of CA and VA in fruit juices samples was carried
out using BLLS/RBL. Numbers of solutes and interferents were set
as 2 and 1, respectively. The results are given in Table 4. Prediction
of CA and VA in sour cherry juice (for unspiked sample) by BLLS/
RBL provides the spectral and concentration of β-CD profiles for
each phenolic acid along with the interferents profile, as shown in
Fig. 5. Even in the presence of interferents, BLLS/RBL was satisfac-
tory for delivering the spectral profiles of phenolic acids, and this
would explain its high prediction power. The results shown in
Table 4 clearly demonstrated the ability of the proposed method to
successfully determine CA and VA in the fruit juices samples. In
addition, according to the delivered spectra depicted in Fig. 5a, a
high similarity between these spectral profiles and those of the
pure solutions (Fig. 3a) confirmed the accuracy and reliability of
the proposed strategy, which fully exploited second-order advan-
tage, regardless of the complexity of the studied matrix. The
applied β-CD concentration range in this study was based on the
preliminary experiments and previous reports about the spectro-
scopic properties of inclusion complexes of CA and VA with β-CD
[53,54].

In order to validate the performance of the proposed method,
the samples were also analyzed by the HPLC-PDA detection
method and the predicted CA and VA concentrations are displayed
in Table 4. In the proposed method, determination of CA and VA in
the real samples (fruit juices samples) was carried out in the
presence of β-CD under the optimum conditions, but in the HPLC
method, the real samples were directly analyzed, so then some
observed partial differences in the results are quite reasonable. The
results of the t-test at appropriate confidence level (95%) revealed
no significant differences between the reference method (HPLC)
and the strategy described in the present report. Therefore, a
comparison of BLLS/RBL results with those obtained by the
chromatographic method demonstrates an acceptable perfor-
mance of the proposed methodology. It is worth to mention that
the proposed method is more environmentally friendly than the
HPLC method. In the gradient elution, use of at least two organic
solvents is inevitable and the post column derivatization is also a

mandatory part of most HPLC analyses, whereas the present
method uses safer and cheaper chemicals in the analysis process.

5. Conclusion

Various ways have been applied for generation of second-order
data until now. This research reports the first application of beta-
cyclodextrin (β-CD) complexes as a new method for generation of
three way data, combined with second-order calibration based on
the BLLS/RBL and PARAFAC algorithms, exploiting the second-
order advantage. This combination can be successfully implemen-
ted for quantification of multicomponents in the presence of
unexpected sample matrix components. Second-order calibration
methods could predict accurate concentrations, together with a
reasonable resolution of spectral profiles for the analytes of
interest from any uncalibrated interferents on account of “sec-
ond-order advantage”.

Both the three-way PARAFAC and BLLS/RBL models predicted
concentration of target phenolic acids in validation samples.
However, due to an intense overlap present in β-CD concentration
dimension, BLLS/RBL provided better results than PARAFAC. BLLS/
RBL clearly manifested the utilization of “second order advantage”
when quantifying CA and VA as an example in fruit juices samples,
even in the presence of uncalibrated/unexpected interferents.
When this model is applied to the analysis of real samples, the
results are satisfactory and comparable with those delivered by
HPLC-PDA detection method. The proposed method could be

Fig. 4. 3-D plots of: (a) calibration sample and (b) validation sample. Pseudounivariate calibration graphs corresponding to the BLLS/RBL models: (c) VA model and
(d) CA model.

Table 3
Figures of merit for quantification of CA and VA using BLLS/RBL method.

Phenolic
acid

SENa (AAU
mL μg�1)

SEL LOD
(μg mL�1)

RMSEP
(μg mL�1)

Analytical
sensitivityγ)
mL μg�1)

VA 0.26 0.27 0.20 0.121 21.4
CA 0.39 0.27 0.13 0.126 32.8

a Arbitrary absorbance unit.
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applied to simultaneous monitoring and quantification of multi-
components in real samples with complex matrices and repre-
sents an interesting, simple, fast, accurate, and economical
alternative to separation methods.
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